A covering lemma for maximal operators with unbounded kernels.
نویسندگان
چکیده
منابع مشابه
Fatou's Lemma for Multifunctions with Unbounded Values
Fatou’s lemma in finitely many dimensions goes back to Aumann [2] and Schmeidler [32]. It plays an important technical role in the usual proofs of competitive equilibrium existence. Related versions of Fatou’s lemma were given by Artstein and Hildenbrand-Mertens [1, 24], and in [3] a version was given that subsumes the aforementioned ones. In another development, Olech introduced the use of con...
متن کاملA Covering Lemma for Rectangles in R
We prove a covering lemma for rectangles in Rn which has connections to a problem of Zygmund and its solution in three dimensions by Cordoba. One of the objectives of this note is to revive interest in a collection of problems in differentiation theory related to a conjecture of Zygmund. We shall also give another proof of the sharp mapping properties near L of the strong maximal operator by pr...
متن کاملMathematical Model for Bi-objective Maximal Hub Covering Problem with Periodic Variations of Parameters
The problem of maximal hub covering as a challenging problem in operation research. Transportation programming seeks to find an optimal location of a set of hubs to reach maximum flow in a network. Since the main structure's parameters of the problem such as origin-destination flows, costs and travel time, change periodically in the real world applications, new issues arise in handling it. In t...
متن کاملFatou’s Lemma for Unbounded Gelfand Integrable Mappings
It is shown that, in the framework of Gelfand integrable mappings, the Fatou-type lemma for integrably bounded mappings, due to Cornet–Medecin [14] and the Fatou-type lemma for uniformly integrable mappings due to Balder [9], can be generalized to mean norm bounded integrable mappings.
متن کاملGeneral form of a cooperative gradual maximal covering location problem
Cooperative and gradual covering are two new methods for developing covering location models. In this paper, a cooperative maximal covering location–allocation model is developed (CMCLAP). In addition, both cooperative and gradual covering concepts are applied to the maximal covering location simultaneously (CGMCLP). Then, we develop an integrated form of a cooperative gradual maximal covering ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Michigan Mathematical Journal
سال: 1987
ISSN: 0026-2285
DOI: 10.1307/mmj/1029003492